PhD: Nanomaterials based energy storage for self-powered IoT devices

Energy generation and storage are key for future electronic devices that can entirely self-power from ambient light, vibrations, radio-waves and temperature differences. To support billions of new sensors and devices forecast to be part of the Internet-of-Things (IoT), efficient and low-cost energy storage solutions are required. Recent progress in functional nanomaterials coupled with advanced printing fabrication techniques have opened up possibilities for the development of cost-efficient, solution-processed printed electronic device.

The advancements in conducting, semiconducting and dielectric nanoparticle inks can be used to create multi-functional electronic circuit and devices that are flexible, light-weight and with very low carbon footprint. This technology is particularly well-suited for the IoT devices with sensor and transmission capabilities, aiming for very low-power consumption and utilising energy-harvesting packaging. The challenge remains to develop efficient energy storage with high power and energy densities, that is fully integrated with projected energy scavengers based on rectannaes and photovoltaics.

In this project, we will aim to develop flexible, ultra-thin supercapacitors for IoT devices, utilising ink-jet printable functional nanomaterials. Devices will benefit from nano-structured electrodes, based on very high area templated surfaces and solution processable metal-oxides. Micro-porosity of the films will be enhanced by the growth of hierarchical nanostructures with optimised surface area to increase electrode-electrolyte interactions. The project will involve screening and characterisation of nanomaterials, device fabrication and testing and energy storage optimisation, and full integration with energy harvesters on plastic foils.

Further details and how to apply here.