Electrolyte decomposition in Li-S cells

Kurtus Hancock, Markus Hagen, Patrik Fanz, Martin Joos, Domini Müller, Michael Abert, Jens Tübke
Fraunhofer-Institut für Chemische Technologie ICT, Joseph-von-Fraunhofer Str. 7, 76327 Pfinztal, Germany

Introduction
Li-S cells are attractive due to their high potential gravimetric energy density, but unfortunately they achieve only low cycle numbers. A major reason for this is the continuous decomposition of electrolyte during cycling.

As low electrolyte/sulfur ratios are required for high gravimetric energy density, this electrolyte decomposition reduces the obtainable cycle number to below 50. It is therefore extremely important to evaluate, reduce or ideally prevent this electrolyte decomposition by utilizing new electrolyte compositions and additives, separators and protection layers.

Experimental
Mass spectrometry ion current responses for up to 128 masses were recorded next to the pressure and electrical charge/discharge data for Li-S, LiSi-S and LiC-S. Consequently gaseous electrolyte decomposition products were related to cell current, voltage and state of charge. Gas chromatography was applied to examine the decomposition products contained within the liquid electrolyte. All measurements were performed twice and were made with two different mass spectrosopes with different software to double-check the results. All applied test cells were carefully checked for leakages and had very low leakage rates.

Results
- In the liquid electrolyte ethanol, methanol, methoxy-ethene and traces of acetone were identified as decomposition products of ether based electrolytes.
- The test cell might have an impact on the results (hard case, polymer case)
- The presence of LiNO₃ has an impact on the decomposition reaction
- Gaseous products are especially CS₂ and N₂

Conclusion
Various Li-S chemistry systems were successfully examined by mass spectrometry resulting in the determination of liquid and gas phase electrolyte decomposition products. The test setup, temperature, internal cell pressure and applied electrodes have an impact on the measurement and results.

Acknowledgement:
The work was financed by the Fraunhofer internal project “MaVo-LiScell” and the BMBF project “DEMS-Bat” (03XP0085)
Speaker Biography:

Markus Hagen

Profile

- Battery research for >7 years
- Focus on next generation materials:
 - Alloy anodes (Sn, Si)
 - Sulfur cathodes (S8, Li2S)
 - Analytics (Electrolyte)
 - Novel membranes/separation
- Project manager of various public and industry projects

Employment History

09/2015 – now: Group leader “Batteries” at Fraunhofer ICT
09/2013 – 09/2015: Scientist at Fraunhofer ICT
09/2009 – 09/2013: PhD research at KIT/Fraunhofer ICT, Applied Electrochemistry

Education

09/2013: PhD – Lithium-Sulfur cells
05/2009: Diploma - Business Engineering at the Karlsruhe Institute of Technology (KIT)