Thermodynamic strategies for Pumped Thermal Exergy Storage (PTES) with liquid reservoirs

Pau Farres-Antunez
Dr. Alex White

Department of Engineering

UK Energy Storage Conference
Birmingham. 1st December 2016
Thermo-mechanical energy storage (TMES)
Thermo-mechanical energy storage (TMES)

Compressed air energy storage (CAES)
Thermo-mechanical energy storage (TMES)

Compressed air energy storage (CAES)

Liquid air energy storage (LAES)
Thermo-mechanical energy storage (TMES)

Compressed air energy storage (CAES)

Liquid air energy storage (LAES)

Pumped thermal exergy storage (PTES)
Thermo-mechanical energy storage (TMES)

Compressed air energy storage (CAES)

High efficiency

Liquid air energy storage (LAES)

Pumped thermal exergy storage (PTES)
Thermo-mechanical energy storage (TMES)

- Compressed air energy storage (CAES)
 - High efficiency

- Liquid air energy storage (LAES)
 - High energy density
 - Geographical independence

- Pumped thermal exergy storage (PTES)
 - High energy density
 - Geographical independence
Solid and liquid storage media
Solid and liquid storage media

PTES with solid reservoirs

- Large heat transfer area
- Pressurised hot tank
- Thermal fronts
Solid and liquid storage media

PTES with solid reservoirs

- Large heat transfer area
- Pressurised hot tank
- Thermal fronts

PTES with liquid reservoirs

- Limited temperature ranges
- Unpressurised tanks
- Tanks at single temperature
Solid and liquid storage media

PTES with solid reservoirs
- Large heat transfer area
- Pressurised hot tank
- Thermal fronts

PTES with liquid reservoirs
- Limited temperature ranges
- Unpressurised tanks
- Tanks at single temperature
Different cycles
Different cycles

Gas cycle
- Sensible heat storage
- High energy density
- Low work ratio (~2.5)
Different cycles

Gas cycle
- Sensible heat storage
- High energy density
- Low work ratio (~2.5)

Supercritical CO$_2$
- Sensible & latent heat
- Moderate work ratio (~5)
- Low energy density
Different cycles

Gas cycle
- Sensible heat storage
- High energy density
- Low work ratio (~2.5)

Supercritical CO$_2$
- Sensible & latent heat
- Moderate work ratio (~5)
- Lower energy density (x1/4)

Steam cycle
- Very high work ratio (>100)
- Latent heat exchangers in development stage
- Requires additional Ammonia cycle for charging phase
Thermodynamic strategies

Work Ratio = $\frac{\text{Compressor Work}}{\text{Expander Work}} = \frac{T_1}{T_{\text{min}}}$
Thermodynamic strategies

![Graph showing thermodynamic strategies with specific entropy vs. temperature. The graph includes lines for WR = 2 and WR = 2.8, with points labeled T_min and T_max. The work ratio is defined as Work Ratio = Compressor Work / Expander Work = T_1 / T_min.]
Thermodynamic strategies

- Increasing the top temperature improves WR (→ efficiency) and energy density

- A limit for Tmax exists due to constraints on compressor and energy storage materials (e.g. common molten salts)

\[\text{Work Ratio} = \frac{\text{Compressor Work}}{\text{Expander Work}} = \frac{T_1}{T_{\text{min}}} \]

\[\frac{E}{m} \propto T_1 \left(1 - \frac{1}{WR}\right) \left(\frac{T_{\text{max}}}{T_1} - 1\right) \]
Thermodynamic strategies

We can continue to improve WR by lowering T_{min}

To do so, we require to incorporate a gas-gas regenerator:

\[
\text{Work Ratio} = \frac{\text{Compressor Work}}{\text{Expander Work}} = \frac{T_1}{T_{min}}
\]

\[
\frac{E}{m} \propto T_1 \left(1 - \frac{1}{WR} \right) \left(\frac{T_{max}}{T_1} - 1 \right)
\]
Thermodynamic strategies

We can continue to improve WR by lowering Tmin

To do so, we require to incorporate a gas-gas regenerator:

\[
\text{Work Ratio} = \frac{\text{Compressor Work}}{\text{Expander Work}} = \frac{T_1}{T_{\text{min}}}
\]

\[
\frac{E}{m} \propto T_1 \left(1 - \frac{1}{\text{WR}}\right) \left(\frac{T_{\text{max}}}{T_1} - 1\right)
\]
Thermodynamic strategies

Work Ratio = \frac{\text{Compressor Work}}{\text{Expander Work}} = \frac{T_1}{T_{min}}

\frac{E}{m} \propto T_1 \left(1 - \frac{1}{\text{WR}} \right) \left(\frac{T_{max}}{T_1} - 1 \right)

Same trend applies to power density!
Thermodynamic strategies

Compressor/expander losses
Thermodynamic strategies

- Compressor/expander losses
- Heat exchanger losses

Graphs showing temperature versus specific entropy for different conditions.
Thermodynamic strategies

Two compressions

Compressor/expander losses

Heat exchanger losses
Thermodynamic strategies

Three compressions

Compressor/expander losses

Heat exchanger losses
Thermodynamic strategies

![Diagram showing thermodynamic strategies with temperature and specific entropy plots.](image)

- **Temperature** [°C]: Graph shows temperature ranges from -200°C to 600°C.
- **Specific Entropy** [kJ/Kg.K]: Graph shows specific entropy values from -0.5 to 1.5.
- **Storage material/system capacity** [USD/MWh]: Graph lists various storage materials with their respective costs: Ethanol, Liquid Oxygen, Isopentane, Liquid Nitrogen, Ethylene glycol, Sunflower oil, Water, Molten salts.

The diagram illustrates the thermodynamic strategies for heat storage and regeneration.
Thermodynamic strategies

- Additional stages at cold side allow to use O2 and further increase WR
Can we build a HEX with +99% efficiency?
Can we build a HEX with +99% efficiency?

Bejan (1996):

- Entropy generation is due to thermal resistance and pressure loss: \(\dot{S} = \dot{S}_{\Delta T} + \dot{S}_{\Delta p} \)
- For a given mass flux, exists and optimal \(L/D_h \) that minimises \(\dot{S} \)
Can we build a HEX with +99% efficiency?

Bejan (1996):
- Entropy generation is due to thermal resistance and pressure loss: \(\dot{S} = \dot{S}_{\Delta T} + \dot{S}_{\Delta p} \)
- For a given mass flux, exists and optimal \(L/D_h \) that minimises \(\dot{S} \)

We can apply the analysis to a counter-flow HEX, flat plate or shell-and-tube:
- \(L_1 = L_2 \) and \(A_1 = A_2 \)
- Use standard heat transfer and flow-friction correlations
- Find an analytical expression: \(\dot{S} = f(A, D_h) \)
Can we build a HEX with +99% efficiency?

Exergetic efficiency = 97%

Heat transfer area/flow rate $\left[\text{m}^2/\text{kg/s}\right]$ vs. D_h [mm] for different pressures p.

- $p = 1$ [bar] (solid blue line)
- $p = 10$ [bar] (dashed blue line)
- $p = 100$ [bar] (dotted blue line)
Can we build a HEX with +99% efficiency?

Turbulent regime

Laminar regime:

\[A \propto D_h \]
\[L \propto D_h^2 \]
Can we build a HEX with +99% efficiency?
Can we build a HEX with +99% efficiency?
Can we build a HEX with +99% efficiency?

~1000m²/MW and ~1m³/MW at 99% efficiency
Concluding remarks
Concluding remarks

- PTES: high energy density and geographical independence
Concluding remarks

- PTES: high energy density and geographical independence
- Using liquid tanks allows to:
 - Pressurise working fluid
 - Have lower self-discharge and a well-defined state-of-charge
Concluding remarks

- PTES: high energy density and geographical independence
- Using liquid tanks allows to:
 - Pressurise working fluid
 - Have lower self-discharge and a well-defined state-of-charge
- Several strategies exist to improve Work Ratio
Concluding remarks

- PTES: high energy density and geographical independence
- Using liquid tanks allows to:
 - Pressurise working fluid
 - Have lower self-discharge and a well-defined state-of-charge
- Several strategies exist to improve Work Ratio
- Designing a HEX with ~99% efficiency is key to success
THANKS FOR LISTENING!

QUESTIONS?
Acknowledgements and references

Research Funding:
- Peterhouse, Cambridge

Funding to attend UKES2016:
- Peterhouse, Cambridge
- Cambridge University Engineering Department, Ford of Britain Fund

References:

Extra slides...
What is Pumped Thermal Exergy Storage?

Literature uses several names...

PTES: Pumped Thermal Energy Storage

PHES: Pumped Heat Electricity Storage

TEES: Thermo-Electrical Energy Storage

CHEST: Compressed Heat Energy Storage

SEPT: Stockage d'Electricité par Pompage Thermique
Can we build a HEX with +99% efficiency?

Exergetic efficiency = 97%

- **Turbulent regime**
 - Higher pressures \rightarrow Higher L and lower D_h

- **Laminar regime:**
 - $A \propto D_h$
 - $L \propto D_h^2$

Min. D_h limited by min. practical L

Higher pressures \rightarrow Higher L and lower D_h