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Challenges and Goals
ÅUnderstanding the charge-discharge processes and the modes of 

capacity fading 
ÅIncreasing cycle life, sulfur utilization, battery power and reducing 

polysulfides (PSs) shuttle
ÅSafety, mainly avoiding lithium dendrite formation during high rate 

charging

Lithium side reactions
ÅA competitionbetween the electrolyte reduction reactions and the PSs 

reduction reactions, which one is worse ?
ÅAt high state of charge (SOC) and at low state of discharge (SOD) lithium 

reduces the PSs
ÅAt low SOC and high SOD lithium reacts with the electrolyte
ÅBoth processes are leading to the formation of a secondary porous SEI, 

to the  precipitation of solids inside the separator and the cathode voids 
and to a sluggish transport of lithium ions in the electrolyte (an increase 
of the labyrinth factor)
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Effects of PSs shuttle 
ÅReducing the Coulombic efficiency 
ÅPassivating the lithium anode with insoluble products (Li2S and Li2S2) 
ÅDegrading the lithium anode due to the formation of unstable solid-

electrolyte interphase (SEI)

Means suggested to minimize the PS shuttle problem
ÅA carbon barrier layer between the cathode and the separator (our 

focus)
ÅSulfurςcarbon and sulfurςpolymer nanocomposites
ÅSulfur and Li2S nano cages 
ÅPorouscurent collectors 
ÅSurface-coated separators
ÅAddition of nitrate and other SEI precursors



The battery was assembled at the discharge state

Why?

1. Minimize the effect of cathode volume expansion on 
discharge (78%)

2. Best when using silicon anode, avoiding pre-lithiation of 
the anode  

3. Similar to the manufacturing of all lithium ion batteries
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Effect of Cathode Binders, 2M LiTFSI+ 0.15M LiNO3

Binder Q loss

(%/cycle)

Q1disc.

(mAh/gS)

Current 

Efficiency (%)

PANI 0.14 623 95

PVDF 0.2 778 96

PVP 0.25 889 98

LiPAA 0.26 1184 97
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Binder Cycle10 Cycle 200
QT

(mAh/gS)

QH/QT

(%)

QT

(mAh/gS)

QH/QT

(%)

PANI 529 50 361 54
PVDF 653 39 455 38
PVP 717 32 473 33

LiPAA 907 31 554 31

Effect of cyclingand binderson Q loss , QT and QH 
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Effect of a Barrier Layer (placed on the cathode), PVDF Binder 
2M LiTFSI+ 0.15M LiNO3
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Å The barriers increase CE, Qin, and mostly QL and the fading rate
Å More Li2S and Li2S2 are formed 
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Effect of Cycling and Barrier Layer, PVDF binder
2M LiTFSI + 0.15 M LiNO 3. 
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Effect of Barrier layer (BL), PANI Binder , 
2M LiTFSI+ 0.15M LiNO3
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Å The barriers increase CE, Qin and mostly QL and the fading rate
Å More Li2S and Li2S2 are formed 
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Effect of Barrier Layer, PANI Binder
2M LiTFSI + 0.15 M LiNO 3. 
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Effect of Reducing the Current After 400 Cycles

(from 100 to 20 micro -Amps)
LiPAA binder . Electrolyte: 2M LiTFSI + 0.15 M LiNO 3
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R1 R2R3

C2
C3

EIS Studies, Nyquist Impedance ς
Which Equivalent Circuit to Chose?

ÅR1 = Rb

ÅR2 = Rct for the redox of S 
species at the cathode 
ÅR3 = RSEI

ÅC3 = CSEI (a typical value 
= 10E-6 F/cm2, 

ÅLSEI~ 1nm)
ÅElectrode area = 1 cm2

(Measurements were taken at the end of discharge)

Csei

A
Lsei 0eeÖÖ=
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Cell Cycles Rb

(ohm)

RSEI

(ohm)

RCT

(ohm)

Ɑ

(ohm·s-

½)

Q loss

(%/cycle)

PVDF 35 10.6 87.8 256.8 44.3 0.2

PANI 46 11.0 98.6 323.7 9.2 0.14

PVP 88 7.3 207.6 1416.0 83.0 0.25

LiPAA 11 8.4 158.6 15.3 137.2 0.26

Effect of BindersWithout a Barrier Layer 

D θ Ɑ

Ɑ- Warburg factor 

1 MHz - 0.01 Hz



Cycles Rb

(ohm)

RSEI

(ohm)

CSEI

(farads)

L*
SEI

(nm)

RCT

(ohm)

CCT 

(farads)

Ɑ

(ohm·s
-½

)

19 10 79 0.8E-6 8.4 56 0.8E-3 28

35 11 68 0.7E-6 9.5 172 0.6E-3 53

205 8 75 0.8E-6 9.1 668 0.15E-3 217

-Im(Z) vs. Re(Z)
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Effect of Cycling Without a Barrier layer, PVDF Binder 

Csei

A
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D θ Ɑ
D ςAn Average diffusion coefficient
Ɑ- Warburg factor 
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Effect ofBarrier, on: Rb, RSEI, L*SEI, ̀ and Rct , PVDF binder 

Cell Cycles Rb

(ohm)

RSEI

(ohm)

RCT

(ohm)

Ɑ
(ohm·s-½)

Pristine 205 8 77 1228 181

Toray barrier 215 6 13 23 71
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With Toray, cycle 215
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Toray BL increases D and anode roughness! (Safety issue?) and reduces Rct , LSEIand RSEI

1 MHz - 0.01 Hz

RSEI (ohm) CSEI (F) L*
SEI(nm)

75 0.8E-6 9.1

13 8.5E-6 0.8

D θ Ɑ

* Apparent SEI thickness (assuming roughness factor =1)



The major factors responsible for capacity fading are: The increase of RCT, 

blocking of the cathode surface, formation of inactive sulfur species and the 

decrease of lithium diffusion coefficient (D) (increase of the labyrinth factor)

The increase of RCT results from blocking of the carbon surface by inactive 

Li2S and Li2S2

To our surprise RSEIand the apparent SEI thickness do not grow on cycling.

Qin and mostly QL , Coulombicefficiency, OCV stability (low self discharge), 

anode roughness(safety issue?) and durability are higherfor cells with a PS

barrier layer 

RCT, LSEI and RSEI are much lower and the diffusion coefficient (D)is higher 

for cells with a barrier layer

PANI, BL free cells, have the largest D and overvoltage values

Cycle life is inversely proportional to sulfur utilization (Q)

Conclusions
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Experimental

ÅLi2S and carbon materials were ball milled (4 hours), mixed 
with a binder dissolved in N-methyl-2-pyrrolidone (NMP) to 
obtain cathodes composition: (Li2S:carbon:binder)  45:45:10
ÅThe cathode was casted on a Al/C foil. 
ÅElectrolytes were dissolved (mostly) in dimethoxyethane

(DME)and dioxolane(DOL) mixture(1:1 v:v).
ÅCelgard 2400 (X2) separator and lithium anode.  
Å2032 coin-cell (1cm2 electrode area). 
ÅTypical cathode loading was ~1mg Li2S/cm2

ÅSeveral types of carbon matrices were tested as PS barrier 
layer. We placed the BL on the cathode (or on the separator)
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S + 2Li + + 2e- �< Li 2S
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Charge-Discharge of Li-S Rechargeable Battery 

L. Nazaret.al. J. Mater. Chem., 2010, 20, 9821
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