Effects of Binders and Cycling on Cell's Impedance Parameters and Fading

E. Peled
London, LiSM3, 27-4-2017

Acknowledgment

D. Golodnitsky1,2, M. Goor1, I. Schektman1 and T. Mukra1

1 – School of Chemistry; 2 - Wolfson Applied Materials Research Center, Tel Aviv University, Tel Aviv, Israel, 69978
Challenges and Goals

• Understanding the charge-discharge processes and the modes of capacity fading
• Increasing cycle life, sulfur utilization, battery power and reducing polysulfides (PSs) shuttle
• Safety, mainly avoiding lithium dendrite formation during high rate charging

Lithium side reactions

• A competition between the electrolyte reduction reactions and the PSs reduction reactions, which one is worse?
• At high state of charge (SOC) and at low state of discharge (SOD) lithium reduces the PSs
• At low SOC and high SOD lithium reacts with the electrolyte
• Both processes are leading to the formation of a secondary porous SEI, to the precipitation of solids inside the separator and the cathode voids and to a sluggish transport of lithium ions in the electrolyte (an increase of the labyrinth factor)
Effects of PSs shuttle

- Reducing the Coulombic efficiency
- Passivating the lithium anode with insoluble products (Li$_2$S and Li$_2$S$_2$)
- Degrading the lithium anode due to the formation of unstable solid-electrolyte interphase (SEI)

Means suggested to minimize the PS shuttle problem

- A carbon barrier layer between the cathode and the separator (our focus)
- Sulfur–carbon and sulfur–polymer nanocomposites
- Sulfur and Li$_2$S nano cages
- Porous curent collectors
- Surface-coated separators
- Addition of nitrate and other SEI precursors
The battery was assembled at the discharge state

Why?

1. Minimize the effect of cathode volume expansion on discharge (78%)
2. Best when using silicon anode, avoiding pre-lithiation of the anode
3. Similar to the manufacturing of all lithium ion batteries
Effect of Cathode Binders, 2M LiTFSI + 0.15M LiNO₃

<table>
<thead>
<tr>
<th>Binder</th>
<th>Q_loss (%/cycle)</th>
<th>Q₁disc. (mAh/gS)</th>
<th>Current Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANI</td>
<td>0.14</td>
<td>623</td>
<td>95</td>
</tr>
<tr>
<td>PVDF</td>
<td>0.2</td>
<td>778</td>
<td>96</td>
</tr>
<tr>
<td>PVP</td>
<td>0.25</td>
<td>889</td>
<td>98</td>
</tr>
<tr>
<td>LiPAA</td>
<td>0.26</td>
<td>1184</td>
<td>97</td>
</tr>
</tbody>
</table>

PVDF

PANI

PVP

LiPAA

This project receives funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 666221.
Effect of cycling and binders on Q_{loss}, Q_T and Q_H

<table>
<thead>
<tr>
<th>Binder</th>
<th>Cycle10</th>
<th>Cycle 200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q_T (mAh/gS)</td>
<td>Q_H/Q_T (%)</td>
</tr>
<tr>
<td>PANI</td>
<td>529</td>
<td>50</td>
</tr>
<tr>
<td>PVDF</td>
<td>653</td>
<td>39</td>
</tr>
<tr>
<td>PVP</td>
<td>717</td>
<td>32</td>
</tr>
<tr>
<td>LiPAA</td>
<td>907</td>
<td>31</td>
</tr>
</tbody>
</table>

Q_H/Q_T is constant \rightarrow an equal loss of all sulfur species
Effect of a Barrier Layer (placed on the cathode), PVDF Binder

2M LiTFSI + 0.15M LiNO₃

<table>
<thead>
<tr>
<th>Layer</th>
<th>CE, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unprotected</td>
<td>96.3</td>
</tr>
<tr>
<td>TORY</td>
<td>99.9</td>
</tr>
<tr>
<td>GDL&SGL</td>
<td>99.5</td>
</tr>
</tbody>
</table>

- The barriers increase CE, \(Q_{in} \), and mostly \(Q_L \) and the fading rate
- More \(\text{Li}_2\text{S} \) and \(\text{Li}_2\text{S}_2 \) are formed
Effect of Cycling and Barrier Layer, PVDF binder
2M LiTFSI + 0.15M LiNO3.

Cycle 10

- The fading rate is higher for Q_L
- A preferential loss of Li$_2$S and Li$_2$S$_2$ species
- Thus Li$_2$S and Li$_2$S$_2$ species may become inactive or lost contact to the carbon

Cycle 200
The barriers increase CE, Q_{in} and mostly Q_L and the fading rate.

More Li_2S and Li_2S_2 are formed.
Effect of Barrier Layer, PANI Binder
2M LiTFSI + 0.15M LiNO3.

Cycle 10

- The fading rate is similar for both Q_L and Q_H
Effect of Reducing the Current After 400 Cycles (from 100 to 20 micro-Amps)

LiPAA binder. Electrolyte: 2M LiTFSI + 0.15M LiNO₃

A support for an irreversible loss of sulfur capacity, starting at cycle 1
EIS Studies, Nyquist Impedance –
Which Equivalent Circuit to Choose?

(Measurements were taken at the end of discharge)

- $\text{Re}(Z)/\text{ohm}$
 - 1.00020 Hz
 - 215.344 Hz
 - 0.46387 Hz

- $\text{Im}(Z)/\text{ohm}$
 - 0.0100058 Hz

- $R_1 = R_b$
- $R_2 = R_{ct}$ for the redox of S species at the cathode
- $R_3 = R_{SEI}$
- $C_3 = C_{SEI}$ (a typical value $= 10E-6 \text{ F/cm}^2$)
- $L_{SEI} \sim 1\text{nm}$
- Electrode area $= 1 \text{ cm}^2$

$$L_{sei} = \frac{A \cdot \varepsilon \cdot \varepsilon_0}{C_{sei}}$$
Effect of Binders Without a Barrier Layer

![Graph showing the capacity of different binders over cycles](image)

Table: Cell Performance

<table>
<thead>
<tr>
<th>Cell</th>
<th>Cycles</th>
<th>R_b (ohm)</th>
<th>R_{SEI} (ohm)</th>
<th>R_{CT} (ohm)</th>
<th>σ (ohm·s$^{-1/2}$)</th>
<th>Q_{loss} (%/cycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVDF</td>
<td>35</td>
<td>10.6</td>
<td>87.8</td>
<td>256.8</td>
<td>44.3</td>
<td>0.2</td>
</tr>
<tr>
<td>PANI</td>
<td>46</td>
<td>11.0</td>
<td>98.6</td>
<td>323.7</td>
<td>9.2</td>
<td>0.14</td>
</tr>
<tr>
<td>PVP</td>
<td>88</td>
<td>7.3</td>
<td>207.6</td>
<td>1416.0</td>
<td>83.0</td>
<td>0.25</td>
</tr>
<tr>
<td>LiPAA</td>
<td>11</td>
<td>8.4</td>
<td>158.6</td>
<td>15.3</td>
<td>137.2</td>
<td>0.26</td>
</tr>
</tbody>
</table>

This project receives funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 666221.

Effect of Binders Without a Barrier Layer

- **D** \propto σ^{-2}
- σ - Warburg factor
Effect of Cycling Without a Barrier layer, PVDF Binder

- **Cycles**
 - 19 cycle
 - 35 cycle
 - 205 cycle

<table>
<thead>
<tr>
<th>Cycles</th>
<th>R_b (ohm)</th>
<th>R_{SEI} (ohm)</th>
<th>C_{SEI} (farads)</th>
<th>L^* (nm)</th>
<th>R_{CT} (ohm)</th>
<th>C_{CT} (farads)</th>
<th>σ (ohm·s$^{-1/2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>10</td>
<td>79</td>
<td>0.8E-6</td>
<td>8.4</td>
<td>56</td>
<td>0.8E-3</td>
<td>28</td>
</tr>
<tr>
<td>35</td>
<td>11</td>
<td>68</td>
<td>0.7E-6</td>
<td>9.5</td>
<td>172</td>
<td>0.6E-3</td>
<td>53</td>
</tr>
<tr>
<td>205</td>
<td>8</td>
<td>75</td>
<td>0.8E-6</td>
<td>9.1</td>
<td>668</td>
<td>0.15E-3</td>
<td>217</td>
</tr>
</tbody>
</table>

* Apparent SEI thickness (assuming roughness factor = 1)

Equations

- $L_{sei} = \frac{A \cdot \varepsilon \cdot \varepsilon_0}{C_{sei}}$
- $D \propto \sigma^{-2}$

D – An Average diffusion coefficient

σ - Warburg factor
Effect of **Barrier**, on: R_b, R_{SEI}, L^{*}_{SEI}, σ and R_{ct}, PVDF binder

EIS of Li_2S(PVDF)-based cathode without barrier

<table>
<thead>
<tr>
<th>Cell</th>
<th>Cycles</th>
<th>R_b (ohm)</th>
<th>R_{SEI} (ohm)</th>
<th>R_{CT} (ohm)</th>
<th>σ (ohm·s$^{-\frac{1}{2}}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pristine</td>
<td>205</td>
<td>8</td>
<td>77</td>
<td>1228</td>
<td>181</td>
</tr>
<tr>
<td>Toray barrier</td>
<td>215</td>
<td>6</td>
<td>13</td>
<td>23</td>
<td>71</td>
</tr>
</tbody>
</table>

Toray BL increases D and anode roughness! *(Safety issue?)* and reduces R_{ct}, L_{SEI} and R_{SEI}

* Apparent SEI thickness (assuming roughness factor =1)
Conclusions

The major factors responsible for capacity fading are: The increase of R_{CT}, blocking of the cathode surface, formation of inactive sulfur species and the decrease of lithium diffusion coefficient (D) (increase of the labyrinth factor).

The increase of R_{CT} results from blocking of the carbon surface by inactive Li$_2$S and Li$_2$S$_2$.

To our surprise R_{SEI} and the apparent SEI thickness do not grow on cycling.

Q_{in} and mostly Q_L, Coulombic efficiency, OCV stability (low self discharge), anode roughness (safety issue?) and durability are higher for cells with a PS barrier layer.

R_{CT}, L_{SEI} and R_{SEI} are much lower and the diffusion coefficient (D) is higher for cells with a barrier layer.

PANI, BL free cells, have the largest D and overvoltage values.

Cycle life is inversely proportional to sulfur utilization (Q).
Acknowledgment

The research leading to these results has received funding from the HELIS, HORIZON 2020 Program under grant agreement n° 666221, and from the Israel Science Foundation (ISF).

Thank you for your attention
Experimental

- Li$_2$S and carbon materials were ball milled (4 hours), mixed with a binder dissolved in N-methyl-2-pyrrolidone (NMP) to obtain cathodes composition: (Li$_2$S:carbon:binder) 45:45:10
- The cathode was casted on a Al/C foil.
- Electrolytes were dissolved (mostly) in dimethoxyethane (DME) and dioxolane (DOL) mixture(1:1 v:v).
- Celgard 2400 (X2) separator and lithium anode.
- 2032 coin-cell (1cm2 electrode area).
- Typical cathode loading was ~1mg Li$_2$S/cm2
- Several types of carbon matrices were tested as PS barrier layer. We placed the BL on the cathode (or on the separator)
Charge-Discharge of Li-S Rechargeable Battery

\[S + 2Li^+ + 2e^- \leftrightarrow Li_2S \]